Monatshefte für Chemie 102, 1217—1225 (1971) © by Springer-Verlag 1971

Der Einfluß des Donorlösungsmittels auf die Ionisation von Triphenylchlormethan durch Antimon(V)chlorid

Kinetische Untersuchungen in nichtwäßrigen Systemen mit Hilfe des Temperatursprungverfahrens, 3. Mitt.**

Von

V. Gutmann* und R. Schmid

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 3 Abbildungen

(Eingegangen am 12. November 1970)

Influence of a Donor Solvent on the Ionization of Triphenylchloromethane by Antimony(V) Chloride

The reaction

$$Ph_{3}CCl + SbCl_{5}(EPD) \xleftarrow{k_{12}}{k_{21}} [Ph_{3}C]^{+}[SbCl_{6}]^{-} + EPD$$

is investigated in the following EPD-solvents: 1.2-dichloroethane, nitromethane, benzonitrile, propanediol-1.2-carbonate, phenylphosphonic dichloride and trimethyl phosphate. Gross rate coefficients and equilibrium constants are given. It is shown that the donicity of the EPD-solvent is inverse proportional to $\log k_{12}$ and to the equilibrium constant.

Die Reaktion

$$Ph_{3}CCl + SbCl_{5}(EPD) \xleftarrow{k_{12}}{\leftarrow} [Ph_{3}C]^{+}[SbCl_{6}]^{-} + EPD$$

wird in folgenden EPD-Lösungsmitteln untersucht: 1.2-Dichloräthan $(D\ddot{A})$, Nitromethan (NM), Benzonitril (BN), Propandiol-1.2-carbonat (PDC), Phenylphosphoroxydichlorid $(PhPOCl_2)$ und Trimethylphosphat (TMP). Die Bruttogeschwindigkeitsund die Gleichgewichtskonstanten werden ermittelt. Es wird gezeigt, daß die Donizität des EPD-Lösungsmittels den log k_{12} -Werten sowie den Gleichgewichtskonstanten umgekehrt proportional ist.

Einleitung

Bisherige Arbeiten ermöglichen es kaum, allgemeine Zusammenhänge zwischen den Eigenschaften eines Lösungsmittels und der Substitutions-

^{*} Herrn Prof. Dr. H. Nowotny in aufrichtiger Verbundenheit gewidmet.

^{** 2.} Mitt.: R. Schmid und V. Gutmann, Mh. Chem. 102, 806 (1971).

kinetik in seinen Lösungen aufzuzeigen. Die Ionisation von Tritylchlorid mit Metallchloriden ist für solche Untersuchungen geeignet. Das charakteristische Spektrum des Triphenylcarboniumions ermöglicht eine Verfolgung des Reaktionsablaufes ohne zusätzlichen Indikator¹ und die Reaktion wird vom Elektronenpaardonator (*EPD*) entscheidend beeinflußt, da das am Acceptorhalogenid koordinierte *EPD* durch *Ph*₃CCl unter Bildung eines unsolvatisierten Chlorometallat-Anions² verdrängt wird. Je fester das Lösungsmittel gebunden ist, desto schwerer wird es substituierbar sein. Es wurde schon früher gezeigt, daß die Lage des Ionisationsgleichgewichtes SbCl₅/*Ph*₃CCl, nämlich der Logarithmus der Gleichgewichtskonstante $K_{[SbCl_4]^-}$, eine Funktion der Donorstärke des Lösungsmittels ist^{3, 4}. Da die Größe der $K_{[SbCl_4]^-}$ -Werte in den verschiedenen Lösungsmitteln um Zehnerpotenzen differieren^{3, 4}, sollten auch bei den Geschwindigkeitskonstanten markante Unterschiede zu erwarten sein.

Es konnten nur EPD-Lösungsmittel mit Donizitäten bis zu der des Trimethylphosphates (DN = 23) verwendet werden, da solche höherer Donorstärke so stark an das Acceptorchlorid gebunden sind, daß sie in einem zu geringen Ausmaß durch Cl⁻ substituiert werden. Andere Lösungsmittel mittlerer Donizität, wie Ketone oder Alkohole, scheiden ebenfalls aus, weil sie mit Antimon(V)chlorid dunkelbraune Lösungen bilden. In 1.2-Dichloräthan und Nitromethan wurden auch GaCl₃ und FeCl₃ untersucht.

Experimenteller Teil

Die Reinigung der Chloride, Durchführung der T-Sprungversuche, Auswertung der Relaxationskurven und Berechnung der Konstanten erfolgte wie bereits beschrieben¹. Nach Literaturangaben wurden absolutiert: 1.2-Dichloräthan $(D\ddot{A})^5$, Benzonitril $(BN)^5$, Propandiol-1.2-carbonat $(PDC)^5$, Trimethylphosphat $(TMP)^6$ und Phenylphosphoroxydichlorid $(PhPOCl_2)^7$. Nitromethan (NM) wurde 10 Stdn. über CaH₂ gekocht und zweimal im Vak. fraktioniert destilliert. Die Reinheit wurde gaschromatographisch und polarographisch überprüft. Der Wassergehalt lag unter $5 \cdot 10^{-4}$ Mol·l⁻¹.

Ergebnisse der T-Sprungexperimente

In den Lösungsmitteln BN, PDC und $PhPOCl_2$ wurden dieselben Relaxationseffekte (τ_1 , τ_2) beobachtet wie in Acetonitril¹. Der Konzen-

¹ 1. Mitt.: V. Gutmann und R. Schmid, Mh. Chem. 102, 798 (1971).

² M. Baaz, V. Gutmann und L. Hübner, Mh. Chem. 91, 537 (1960).

³ V. Gutmann und E. Wychera, Inorg. Nucl. Chem. Letters 2, 257 (1966).

⁴ V. Gutmann, Coordination Chemistry in Non-Aqueous Solutions,

^{8. 25.} Wien-New York: Springer. 1968.

⁵ V. Gutmann und K. H. Wegleitner, Mh. Chem. 101, 1532 (1970).

⁶ V. Gutmann und G. Beer, Inorg. Chim. Acta 3, 87 (1969).

⁷ M. Baaz, V. Gutmann und L. Hübner, Mh. Chem. 92, 135 (1961).

trationsbereich, in dem die Amplituden beider Effekte nebeneinander vorliegen, ist vom Lösungsmittel abhängig: in BN ab $5 \cdot 10^{-4}$, in PDCab 10^{-3} , in $PhPOCl_2$ ab $8 \cdot 10^{-4}$ und in TMP ab $3 \cdot 10^{-2}$ Mol $\cdot l^{-1}$ SbCl₅. Die Relaxationszeiten sind in PDC und $PhPOCl_2$ in einen langsameren Zeitbereich verschoben, so daß es in diesen Lösungsmitteln möglich ist,

$c_{\mathrm{SbCl}_5} [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_{s}\mathrm{CCl}} \ [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	[ms]	$c_{\mathrm{SbC1}_5} [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_{3} ext{CCl}} \ [ext{Mol} \cdot ext{l}^{-1}]$	τ [ms]
$5 \cdot 10^{-5} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4} \\ 5 \cdot 10^{-4} $	$5 \cdot 10^{-5} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4} \\ 5 \cdot 10^{-4}$	$\begin{array}{c} 38.6\\ 26.0\\ 20.5\\ 15.1\\ 9.1\\ < 50\ \mu \mathrm{s} \end{array}$	$5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4}$	$\begin{array}{c} 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4} \\ 5 \cdot 10^{-4} \\ 5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \end{array}$	35.7 31.6 29.1 32.0 27.1 18.8

Tabelle 1. Relaxationszeiten in Benzonitril

Tabelle 2. Relaxationszeiten in Propandiol-1.2-carbonat

$[{{\rm Mol}\cdot l^{-1}}]$	$c_{Ph_{3}\mathrm{CCl}} \ [\mathrm{Mol}\cdot 1^{-1}]$	$ au_1$ [ms]	$ au_2 \\ [\mu s]$	τ ₃ [μs]
$2.5\cdot10^{-4}$	$2.5\cdot10^{-4}$	24.9		
$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	18.6		
$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	15.3	*	
$2 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	*	20	< 10
$5\cdot 10^{-3}$	$5\cdot10^{-3}$	*	11.3	< 10
$5\cdot 10^{-4}$	$1\cdot 10^{-3}$	17.0	*	
$5\cdot 10^{-4}$	$2 \cdot 10^{-3}$	9.7	*	
$1 \cdot 10^{-3}$	$5 \cdot 10^{-4}$	17.0		
$2 \cdot 10^{-3}$	$5\cdot 10^{-4}$	13.9		

* Nicht auswertbar.

Tabelle 3. Relaxationszeiten in Phenylphosphoroxydichlorid

$c_{\mathrm{SbCl}_5} \ [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_{3}\mathrm{CCl}} \ [\mathrm{Mol}\cdot\mathrm{l}^{-1}]$	$ au_1$ [ms]	τ_2 [µs]	$ au_3$ $[\mus]$
$2.5\cdot 10^{-4}$	$2.5\cdot 10^{-4}$	480		
$5\cdot 10^{-4}$	$5 \cdot 10^{-4}$	440		
$7 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	432		
$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	*	74	< 10
$5 \cdot 10^{-3}$	$5\cdot 10^{-3}$	*	43.5	< 10
$2.5 \cdot 10^{-4}$	$2.5\cdot10^{-4}$	382		
$2.5 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	296	*	
$1 \cdot 10^{-3}$	$2.5\cdot10^{-4}$		50	< 10
$5 \cdot 10^{-4}$	$2.5 \cdot 10^{-4}$		*	*

* Nicht auswertbar.

1219

auch τ_2 aufzulösen. Dabei zeigte sich, daß τ_2 aus mindestens zwei Relaxationszeiten zusammengesetzt ist, deren eine $< 10 \ \mu s$ liegt. Die in den Tabellen angegebenen τ -Werte sind Mittelwerte aus vier Messungen.

In TMP war es nur in einem sehr schmalen Konzentrationsbereich möglich, Messungen durchzuführen, da unter $2 \cdot 10^{-2}$ Mol $\cdot l^{-1}$ Ph_3 CCl kein Tritylkation gebildet wird, aber nur $5 \cdot 10^{-2}$ Mol $\cdot l^{-1}$ Ph_3 CCl löslich sind (Tab. 4).

 $c_{\mathrm{SbCl}_5} [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_3\mathrm{CCl}} \ [\mathrm{Mol}\cdot\mathrm{l}^{-1}]$	τ ₁ [ms]	$ au_2$
 $2 \cdot 10^{-2}$ $3 \cdot 10^{-2}$	$2 \cdot 10^{-2} \\ 3 \cdot 10^{-2}$	1.22 1.11	
$4 \cdot 10^{-2}$	$4 \cdot 10^{-2}$	1.01	nicht auswertba

Tabelle 4. Relaxationszeiten in Trimethylphosphat

In 1.2-Dichloräthan $(D\ddot{A})$ wird bei niedrigen Konzentrationen ebenfalls ein Gleichgewicht im Millisekundenbereich (τ_1) beobachtet, ab $4 \cdot 10^{-4}$ Mol·l⁻¹ können die Relaxationskurven nicht mehr ausgewertet werden $(\tau_2 < 50 \ \mu\text{s})$ (Tab. 5 bis 7). Wird die Konzentration von SbCl₅ oder GaCl₃ unter Konstanthaltung von c_{Ph_sCCl} erhöht, verändert sich das Relaxationsbild entscheidend: während noch bei einem Molverhältnis $MeCl_n : Ph_3CCl = 2:1$ durch den Temperatursprung die $[Ph_3C]^+$ -Konzentration erhöht wird $(\tau_1 \sim 100 \text{ ms})$, wird diese bei einem vierfachen Überschuß erniedrigt (< 50 μ s), aber τ_1 ist noch sichtbar. Bei zehnfachem Überschuß wird durch den T-Sprung nur eine Abnahme von $c_{[Ph_sC]^+}$ registriert (< 50 μ s). Diese Relaxationsbilder werden unter denselben Bedingungen auch in Nitromethan (NM) erhalten. In NM liegen die Relaxationszeiten in demselben Bereich wie in $D\ddot{A}$, doch

$c_{\mathrm{GaCl}_3} [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_3CCl} \ [Mol \cdot l^{-1}]$	τ [ms]
$4 \cdot 10^{-5}$	$4 \cdot 10^{-5}$	54.5
$8\cdot 10^{-5}$	$8 \cdot 10^{-5}$	41.0
$1.2 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	30.4
$2\cdot 10^{-4}$	$2\cdot 10^{-4}$	27.1
$4\cdot 10^{-4}$	$4\cdot 10^{-4}$	$iggl\{ egin{array}{c} 17.5 \ < 50\ \mu { m s} \end{array} iggr]$
$4 \cdot 10^{-5}$	$8\cdot 10^{-5}$	43.0
$4 \cdot 10^{-5}$	$2\cdot 10^{-4}$	38.2
$4 \cdot 10^{-5}$	$4 \cdot 10^{-4}$	30.0

Tabelle 5. Relaxationszeiten im System GaCl₃/Ph₃CCl in 1.2-Dichloräthan

$c_{\mathrm{SbCl}_5}[\mathrm{Mol}\cdot \mathrm{l}^{-1}]$	$c_{Ph_3\mathrm{CCl}} \ [\mathrm{Mol}\cdot\mathrm{l}^{-1}]$	τ [ms]
$4 \cdot 10^{-5}$	$4 \cdot 10^{-5}$	64.5
$8 \cdot 10^{-5}$	$8 \cdot 10^{-5}$	41.0
$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	37.2
$2\cdot 10^{-4}$	$2\cdot 10^{-4}$	$iggl\{ egin{array}{c} 30.2 \ < 50 \ \mu { m s} \end{array} iggr\}$
$4 \cdot 10^{-5}$	$8 \cdot 10^{-5}$	54.5
$4 \cdot 10^{-5}$	$2 \cdot 10^{-4}$	43.1
$4 \cdot 10^{-5}$	$4 \cdot 10^{-4}$	25.7
$4 \cdot 10^{-5}$	$1 \cdot 10^{-3}$	17.9

Tabelle 6. Relaxationszeiten im System SbCl₅/Ph₃CCl in 1.2-Dichloräthan

Tabelle 7. Relaxationszeiten im System FeCl₃/Ph₃CCl in 1.2-Dichloräthan

$c_{\mathrm{FeCl}_3}[\mathrm{Mol}\cdot l^{-1}]$	$c_{Ph_{s}CCl}$ [Mol·l ⁻¹]	τ [ms]
$2\cdot 10^{-4}$	$2\cdot 10^{-4}$	30.5
$4\cdot 10^{-4}$	$4 \cdot 10^{-4}$	$\begin{cases} 16.4 \\ < 50 \ \mu s$
$2 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	24.4
$2 \cdot 10^{-4}$	$8 \cdot 10^{-4}$	$iggl\{ {egin{array}{c} 16 \ < 50 \ \mu s} iggr]$

Tabelle 8. Relaxationszeiten im System GaCl₃/Ph₃CCl in Nitromethan

the second s		
$\frac{c_{\mathrm{GaCl}_3}}{[\mathrm{Mol}\cdot l^{-1}]}$	$c_{Ph_{s}\mathrm{CCl}}$ [Mol·l ⁻¹]	τ [ms]
$8 \cdot 10^{-5}$ $8 \cdot 10^{-5}$ $8 \cdot 10^{-5}$ $8 \cdot 10^{-5}$	$ 8 \cdot 10^{-5} \\ 1.6 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} $	99 47 23 8.3

Tabelle 9. Relaxationszeiten im System SbCl₅/Ph₃CCl in Nitromethan

$c_{\mathrm{SbCl}_5} [\mathrm{Mol} \cdot \mathrm{l}^{-1}]$	$c_{Ph_{s}\mathrm{CCl}} \ [\mathrm{Mol}\cdot \mathrm{l}^{-1}]$	τ [ms]
$8 \cdot 10^{-5}$	$8\cdot 10^{-5}$	33.5
$8 \cdot 10^{-5}$	$1.6 \cdot 10^{-5}$	15
$8 \cdot 10^{-5}$	$2\cdot 10^{-4}$	11
$8 \cdot 10^{-5}$	$4 \cdot 10^{-4}$	6.5
$8 \cdot 10^{-5}$	$8 \cdot 10^{-4}$	3.0

streuen die Werte so sehr, daß keine Konstanten errechnet werden können. Nur unter Konstanthaltung der Metallchloridkonzentration wurde eine reproduzierbare Änderung der τ -Werte mit der Konzentration erhalten (Tab. 8 und 9).

Diskussion

Wie schon ausgeführt¹, wurde, um in verschiedenen Lösungsmitteln vergleichbare Werte zu erhalten, die Reaktion auf das einfache Gleichgewicht

Abb. 1. Quadrat der reziproken Relaxationszeit in Abhängigkeit von der Summe der Einwaagekonzentrationen in Benzonitril

zurückgeführt und der Konzentrationsbereich ausgewertet, in dem hauptsächlich ein einziger Relaxationseffekt beobachtet werden konnte. Ähnlich wie auch in Acetonitril¹ bestehen lineare Zusammenhänge zwischen den Quadraten der reziproken Relaxationszeiten und den Summen der Einwaagekonzentrationen. In Abb. 1 ist das Diagramm für Benzonitril wiedergegeben. In den anderen Lösungsmitteln werden ähnliche Diagramme erhalten. Aus ihnen werden die Geschwindigkeitskonstanten ermittelt. Der Ordinatenabschnitt ist $(k_{21})^2$, der Anstieg der Geraden $2 k_{12}k_{21}$. In Tab. 10 sind die berechneten Konstanten zusammengefaßt. In Nitromethan war es nicht möglich, die Berechnung auf diese Weise vorzunehmen, da der Streubereich der Meßpunkte zu groß ist. Die Konstanten konnten nur grob abgeschätzt werden, wobei unter Zuhilfenahme der Werte aus Tab. 8 τ^{-1} gegen die Einwaagekonzentrationen von Ph_3 CCl aufgetragen wurde. Der Ordinatenabschnitt ist k_{21} , die Steigung der Geraden k_{12} . Abb. 2 zeigt, daß der Logarithmus von k_{12} der Donizität des Lösungsmittels umgekehrt proportional ist. Er nimmt mit abnehmender Stärke der Solvatbindung zu. Eine Ausnahme stellt PhPOCl₂ dar, wo k_{12} wesentlich niedriger ist. Die hohe Viskosität von 4.1 cP (Tab. 10) könnte dafür verantwortlich sein.

EPD- Solvens	$DN_{ m SbCl_5}$	Viskosität ² 20° [cP]	k_{12} $[l \cdot \mathrm{Mol^{-1} s^{-1}}]$	$k_{21} \ [\mathrm{s}^{-1}]$	$K_{[\mathrm{SbCl}_6]^-}$	K _{[SbCl₆]^{-b}}
DÄ NM ^c BN AN ^d PDC PhPOCl ₂	$2.7 \\11.9 \\14.1 \\15.1 \\18.5$	$\begin{array}{c} 0.955\\ 0.744\\ 1.316\\ 0.462\\ 2.83\\ 4.10\end{array}$	$\begin{array}{c} 1.7\cdot 10^6\\ 4.0\cdot 10^5\\ 3.3\cdot 10^5\\ 1.7\cdot 10^5\\ 3.4\cdot 10^4\\ 1.9\cdot 10^2\end{array}$	$5 \\ 3 \\ 10 \\ 17.5 \\ 26.4 \\ 2$	$3.5 \cdot 10^5$ $1.0 \cdot 10^5$ $3.3 \cdot 10^4$ $1.1 \cdot 10^4$ $1.3 \cdot 10^3$ $9.6 \cdot 10^1$	$>10^5\ >10^5\ >10^5\ -10^5\ -10^5\ -10^5\ 3\cdot10^2\ 4\cdot10^1$
TMP	23.0	2.32	$5.1 \cdot 10^3$	$6.5\cdot 10^2$	$7.8 \cdot 10^{0}$	$2 \cdot 10^{0}$

Tabelle 10. Bruttokonstanten für das System SbCl₅/Ph₃CCl in verschiedenen EPD-Lösungsmitteln

^a Eigene Messungen.

^b Spektrophotometrisch bestimmt.

 k_{12}, k_{21} und K grob abgeschätzt.

^d Entnommen der 1. Mitt.

 k_{21} wird vom Lösungsmittel nur wenig beeinflußt. Aus dem entscheidenden Einfluß des Lösungsmittels auf die Geschwindigkeitskonstante der Hinreaktion folgt, daß die Lösung der Acceptorchlorid----Solvens-Bindung der geschwindigkeitsbestimmende Schritt ist, daß also die Substitutionsreaktion nach einem S_N1-Mechanismus abläuft. Daß das Lösungsmittel auf die Rückreaktion wenig Einfluß hat, deutet darauf hin, daß hier die Abspaltung des Chloridions geschwindigkeitsbestimmend ist. Auffällig ist der große k_{21} -Wert in *TMP*. Möglicherweise werden Lösungsmittel hoher Donizität in dem Ausmaß koordinieren, daß eine Änderung des Mechanismus in Richtung von S_N1 nach S_N2 bewirkt wird.

Die Übereinstimmung der spektrophotometrisch und kinetisch ermittelten Gleichgewichtskonstanten ist zufriedenstellend (Tab. 10). In $D\ddot{A}$ und NM ist $K_{[\rm SbCl_4]^-}$ wesentlich niedriger als erwartet (Abb. 3), wofür ein zusätzliches Gleichgewicht verantwortlich sein dürfte, an dem Assoziate der Acceptorchloride beteiligt sind. Nach Ramanspektrographischen Befunden liegen in festem SbCl₅ Molekülassoziate vor⁸. Polymere Species wurden auch in FeCl₃-Lösungen in Nitromethan nachgewiesen⁹.

⁸ J. Savatinova und M. Markov, J. Prikl. Spektrosk. 7 (4), 599 (1967). ⁹ P. A. D. De Maine und E. Koubek, J. Inorg. Nucl. Chem. 11, 329 (1959).

Ferner liegen in den Lösungen von SbCl₅, FeCl₃ und AlCl₃ in POCl₃ polymere Species vor¹⁰. Die Reaktion des AlCl₃ mit SbCl₅ in POCl₃ wird folgendermaßen wiedergegeben¹¹:

Abb. 2. log k_{12} in Abhängigkeit von der Donizität DN_{SbCl_s}

Abb. 3. log $K_{[\text{SbCl}_s]}$ in Abhängigkeit von der Donizität DN_{SbCl_s} ; \triangle Spektrophotometrisch ermittelte Werte

¹⁰ V. Gutmann und M. Baaz, Mh. Chem. **90**, 729 (1959); M. Baaz und V. Gutmann, l. c. **90**, 426 (1959).

¹¹ V. Gutmann, in: Halogen Chemistry, 2, S. 127 (Ed. V. Gutmann), Acad. Press 1967.

Da die Relaxationskurven in den Systemen $AlCl_3/Ph_3CCl/D\ddot{A}$ und $SbCl_5/AlCl_3/Ph_3CCl/D\ddot{A}$ ident sind, ist anzunehmen, daß auch im System $AlCl_3/Ph_3CCl/D\ddot{A}$ Al-enthaltende Kationen vorliegen. In Dichloräthan sind die Relaxationszeiten im genannten System denen der Systeme anderer Acceptorchloride, wie SbCl₅. GaCl₃ und FeCl₃ ähnlich. Sie liegen auch in demselben Zeitbereich in EPD-Lösungsmitteln höherer Donizität wie BN, AN, PDC oder TMP. T-Sprungversuche an einer FeCl₃-Lösung in 1.2-Dichloräthan (ohne Ph₃CCl) zeigen, daß in Lösung ein Gleichgewicht vorliegt, an dem [FeCl₄]--Ionen beteiligt sind. Gemessen wurde bei 530 nm, einem der Absorptionsmaxima des [FeCl4]--Ions. Aus diesen Befunden muß geschlossen werden, daß in verdünnten Lösungen Polymere, welche mit abnehmender Konzentration stärker abgebaut sind, mit Metallchloronium-Ionen, die durch das Lösungsmittel stabilisiert werden, im Gleichgewicht stehen, sehr vereinfacht etwa

$$\begin{array}{l} 2 \ (\text{AlCl}_3)_n + n \cdot mL \rightleftharpoons n \ [\text{AlCl}_2 L_m]^+ [\text{AlCl}_4]^- \\ 2 \ (\text{SbCl}_5)_n + n \cdot mL \rightleftharpoons n \ [\text{SbCl}_4 L_m]^+ [\text{SbCl}_6]^-. \end{array}$$

Daß die genannten Metallchloride mit Dichloräthan in Wechselwirkung stehen, ist auch daraus ersichtlich, daß sich Lösungen dieser Metallchloride in $D\ddot{A}$, die anfänglich farblos sind, nach einigen Stunden rot bis bräunlich färben.

Der große Streubereich der Meßpunkte in Nitromethan dürfte darauf zurückzuführen sein, daß zusätzliche, noch nicht definierte Reaktionen ablaufen. So zeigte *Pocker*¹², daß beim Lösen von Triphenylchlormethan in *NM* Ionisation unter Entbindung von Chlorwasserstoff erfolgt.

Dem Fonds zur Förderung der wissenschaftlichen Forschung in Österreich danken wir für die Unterstützung (Projekt Nr. 524).

¹² Y. Pocker, J. Chem. Soc. 1958, 240.